M(COMPUTER ORGANIZATION AND DESIGN 5th

The Hardware/Software Interface > difion

| Chapter 3

| Floating Point Arithmetic

| Review - Multiplication

—‘1'

w add
shift
product right

I | muttiplier > Control
A 4

vV v v ¥
O-0-0-0

Chapter 3 — Floating Point Representation

| Review - Division

I
—
w subtract
shift

dividend __'eft

|remavinder uotient Control
e
O
e
©)
e
<0
O

Floating Point

What can be represented in N bits?
Unsigned 0 to 2N-1
2’'s Complement -2N1 to 2N -1
But, what about--
Very large numbers?
9,349,398,989,787,762,244,859,087,678
1.23 x 107
Very small numbers?
0.0000000000000000000000045691

2.98 x 1032
Fractional values? 0.35
Mixed numbers? 10.28
Irrationals? b

Chapter 3 — Floating Point Representation

Floating Point

The essential idea of floating point representation is that a
fixed number of bits are used (usually 32 or 64) and that
the binary point "floats" to where it is needed. Some of the
bits of a floating point representation must be used to say
where the binary point lies. The programmer does not
need to explicitly keep track of it.

IEEE (Institute of Electrical and Electronics Engineers)
created a standard for floating point. This is the IEEE 754
standard, released in 1985 and updated in 2008. All “main
stream” hardware and software follows this standard.

Floating Point

Floating Point provides representation for non-integral
numbers.
Like scientific notation, we need to “normalize”

_ 56
2.34 %10 4_I normalized
+0.002 x 104 <=

198702 x 109 e——— 0ot normalized |
In binary

1. XXXXXXXy X 2YYVY

This is the representation for Types float and double
in C.

Chapter 3 — Floating Point Representation

| Sign and Magnitude Representation
|

Sign Exponent Fraction
1 bit 8 bits 23 bits

: F

More exponent bits =» wider range of numbers.
More fraction bits =» higher precision.

For normalized numbers, we are guaranteed that the
number is of the form 1.xxxx.... Hence, in IEEE 754
standard, the 1 is implicit.

IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

x = (—1)° x(1+Fraction) x 2 xnent-8a)

S: sign bit (0 = non-negative, 1 = negative).
Normalize significand: 1.0 < |significand| < 2.0

Always has a leading pre-binary point 1 bit, so no need to
represent it explicitly. This bit is referred to as the “hidden” bit.

Significand is the Fraction with the “1.” restored.
Exponent: excess representation: actual exponent + Bias

Ensures exponent is unsigned.
Single: Bias = 127; Double: Bias = 1023

Chapter 3 — Floating Point Representation

Single-Precision Range

Exponents 00000000 and 11111111 are reserved for
exceptions.
Smallest value

Exponent: 00000001
= actual exponent =1 —-127 = -126

Fraction: 000...00 = significand = 1.0
+1.0x 276 = +1.2 x 10738
Largest value

exponent: 11111110
= actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
+2.0 x 2127 = +3.4 x 10*38

Double-Precision Range

Exponents 0000...00 and 1111...11 reserved.

Smallest value
Exponent: 00000000001
= actual exponent = 1 — 1023 = -1022
Fraction: 000...00 = significand = 1.0
+1.0 x 271022 = +2 2 x 10308

Largest value
Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

Fraction: 111...11 = significand = 2.0
2.0 x 2+1023 =~ +1.8 x 1(0+308

Chapter 3 — Floating Point Representation

Floating-Point Example

What number is represented by the single-precision float

1000000101000...007?
S =
Exponent = 10000001, = 129
Fraction = 01000...00,
X = (=1) x (1 + 01,) x 2(129-127)
=(-1)x1.25 x 22
=-5.0

Floating-Point Example

What is the FP bit representation for —0.75447?

Represent —0.75
—0.75=(-1)'x 1.1, x 27
S=
Fraction = 1000...00,
Exponent = —1 + Bias
Single: —1 + 127 =126 = 01111110,
Double: —1 + 1023 = 1022 = 01111111110,
Single: 1011111101000...00

Double: 1011111111101000...00

Chapter 3 — Floating Point Representation

Code Example — Degree Conversion

MIPS has a second set of 32 32-bit registers reserved for
floating point operations.

float f2c (float fahr)

{
return ((5.0/9.0) * (fahr — 32.0));

}

(argument fahr is stored in $f12)
lwc1 $f16, const5($gp)

lwc1 $f18, const9($gp)

div.s $f16, $f16, $f18

lwc1 $f18, const32($gp)

sub.s $f18, $f12, $f18

mul.s $f0, $f16, $f18

jr $ra

Floating-Point Addition

Addition (and subtraction)
(£F1 x 2B1) + (£F2 x 2F?) = +F3 x 283

Step 0: Restore the hidden bitin F1 and in F2.

Step 1: Align fractions by right shifting F2 by E1 - E2 positions
(assuming E1 > E2) keeping track of the lower (or higher) order
bits shifted out.

Step 2: Add the resulting F2 to F1 to form F3.
Step 3: Normalize F3 (so it is in the form 1. XXXXX...)

If F1 and F2 have the same sign, shift F3 and increment E3
(check for overflow).

If F1 and F2 have different signs, F3 may require many left
shifts each time decrementing E3 (check for underflow).

Step 4: Round F3 and possibly normalize again.

Step 5: Rehide the most significant bit of F3 before storing the
result.

Chapter 3 — Floating Point Representation

Floating-Point Addition

Consider a 4-digit decimal example
9.999 x 101 + 1.610 x 10"

1. Align decimal points
Shift number with smaller exponent.
9.999 x 101 + 0.016 x 10!

2. Add significands
9.999 x 10" + 0.016 x 10" = 10.015 x 10!

3. Normalize result & check for over/underflow
1.0015 x 102

4. Round and renormalize if necessary
1.002 x 102

FP Adder Hardware

Much more complex than integer adder.

Doing it in one clock cycle would take too long
Much longer than integer operations.
Slower clock would penalize all instructions.

FP adder usually takes several cycles
Can be pipelined.

Chapter 3 — Floating Point Representation

FP Adder Hardware

| Sign I Exponent I Fraction I I Sign I Exponent | Fraction

Shift smaller
number right

J
J

Floating-Point Multiplication

| Consider a 4-digit decimal example

1.110 x 1070 x 9.200 x 105

1. Add exponents
For biased exponents, subtract bias from sum.
New exponent=10+-5=5

2. Multiply significands
1.110 x 9.200 = 10.212 = 10.212 x 10°

3. Normalize result & check for over/underflow
1.0212 x 108

4. Round and renormalize if necessary
1.021 x 108

5. Determine sign of result from signs of operands
+1.021 x 106

Chapter 3 — Floating Point Representation

Denormal Numbers

Exponent = 000...0 = hidden bitis 0

x = (=1)° x(0+Fraction)x 2 %=

Denormal numbers are smaller than normal numbers.

Denormal with fraction = 000...0

X =(=1)°x(0+0)x2 "% =+0.0
el

Two representations
of 0.0!

Infinities and NaNs

Exponent = 111...1, Fraction = 000...0
tInfinity

Can be used in subsequent calculations, avoiding need for
overflow check.

Exponent = 111...1, Fraction # 000...0
Not-a-Number (NaN).
Indicates illegal or undefined result
e.g.,,0.0/0.0

Can be used in subsequent calculations.

Chapter 3 — Floating Point Representation

10

Accurate Arithmetic

Extra bits of precision (guard, round, sticky).
Choice of rounding modes.

Not all FP units implement all options

requirements.

extra bits during calculations

Round bit — used to improve rounding accuracy.

addition/subtraction).

The IEEE 754 Standard specifies additional rounding control

Allows programmer to fine-tune numerical behavior of a computation.

Most programming languages and FP libraries just use defaults.
Trade-off between hardware complexity, performance, and market

Rounding (except for truncation) requires the hardware to include

Guard bit — used to provide one bit when shifting left to normalize a
result (e.g., when normalizing after division or subtraction).

Sticky bit — used to support Round to nearest even; itis setto a 1
whenever a 1 bit shifts (right) through it (e.g., when aligning during

x86 FP Instructions

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i) | FTADD” mem/ST(i) |FICOM FPATAN
FISTP mem/ST(i) | FISUBR” mem/ST(i) |FIUuCOM F2XMI
FLDPI FIMUL® mem/ST(i) | FsTsw AX/mem | FCOS
FLD1 FIDIVRP mem/ST(i) FPTAN
FLDZ FSQRT FPREM
FABS FPSIN
FRNDINT FYL2X

Optional variations
: integer operand.
: pop operand from stack.
: reverse operand order.
But not all combinations allowed.

Chapter 3 — Floating Point Representation

11

Subword Parallelism

ALUs are typically designed to perform 64-bit or 128-bit
arithmetic.

Some data types are much smaller, e.g., bytes for pixel
RGB values, half-words for audio samples.

Partitioning the carry-chains within the ALU can convert
the 64-bit adder into 4 16-bit adders or 8 8-bit adders.

A single load can fetch multiple values, and a single add
instruction can perform multiple parallel additions,
referred to as subword parallelism.

Concluding Remarks

Bits have no inherent meaning

Interpretation depends on the instructions applied.
Computer representations of numbers

Finite range and precision.

Need to account for this in programs.
ISA’s support arithmetic

Signed and unsigned integers.

Floating-point approximation to real numbers.
Bounded range and precision

Operations can overflow and underflow.

MIPS ISA strongly supports IEEE-754.

Chapter 3 — Floating Point Representation

12

