
Chapter 3 — Floating Point Representation 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 3

Floating Point Arithmetic

Review - Multiplication

multiplicand

32-bit ALU

multiplier Control

add
shift
rightproduct

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

Chapter 3 — Floating Point Representation 2

Review - Division

divisor

32-bit ALU

quotient Control

subtract
shift
leftdividend

remainder

0 0 1 0 = 2

= 3 with 0 remainder

0 0 0 0 0 1 1 0 = 6
0 0 0 0 1 1 0 0

sub 1 1 1 0 1 1 0 0 rem neg, so ‘ient bit = 0
0 0 0 0 1 1 0 0 restore remainder
0 0 0 1 1 0 0 0

sub 1 1 1 1 1 1 0 0 rem neg, so ‘ient bit = 0
0 0 0 1 1 0 0 0 restore remainder
0 0 1 1 0 0 0 0

sub 0 0 0 1 0 0 0 1 rem pos, so ‘ient bit = 1
0 0 1 0 0 0 1 0

sub 0 0 0 0 0 0 1 1 rem pos, so ‘ient bit = 1

Floating Point

n What can be represented in N bits?
n Unsigned 0 to 2N-1
n 2’s Complement - 2N-1 to 2N-1 - 1

n But, what about--
n Very large numbers?

n 9,349,398,989,787,762,244,859,087,678
n 1.23 x 1067

n Very small numbers?
n 0.0000000000000000000000045691
n 2.98 x 10-32

n Fractional values? 0.35
n Mixed numbers? 10.28
n Irrationals? p

Chapter 3 — Floating Point Representation 3

Floating Point

n The essential idea of floating point representation is that a
fixed number of bits are used (usually 32 or 64) and that
the binary point "floats" to where it is needed. Some of the
bits of a floating point representation must be used to say
where the binary point lies. The programmer does not
need to explicitly keep track of it.

n IEEE (Institute of Electrical and Electronics Engineers)
created a standard for floating point. This is the IEEE 754
standard, released in 1985 and updated in 2008. All “main
stream” hardware and software follows this standard.

Floating Point
n Floating Point provides representation for non-integral

numbers.
n Like scientific notation, we need to “normalize”

n –2.34 × 1056

n +0.002 × 10–4

n +987.02 × 109

n In binary
n ±1.xxxxxxx2 × 2yyyy

n This is the representation for Types float and double
in C.

normalized

not normalized

Chapter 3 — Floating Point Representation 4

Sign and Magnitude Representation

Sign Exponent Fraction
1 bit 8 bits 23 bits
S E F

n More exponent bits è wider range of numbers.
n More fraction bits è higher precision.
n For normalized numbers, we are guaranteed that the

number is of the form 1.xxxx…. Hence, in IEEE 754
standard, the 1 is implicit.

IEEE Floating-Point Format

n S: sign bit (0 Þ non-negative, 1 Þ negative).
n Normalize significand: 1.0 ≤ |significand| < 2.0

n Always has a leading pre-binary point 1 bit, so no need to
represent it explicitly. This bit is referred to as the “hidden” bit.

n Significand is the Fraction with the “1.” restored.

n Exponent: excess representation: actual exponent + Bias
n Ensures exponent is unsigned.
n Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x -´+´-=

Chapter 3 — Floating Point Representation 5

Single-Precision Range

n Exponents 00000000 and 11111111 are reserved for
exceptions.

n Smallest value
n Exponent: 00000001
Þ actual exponent = 1 – 127 = –126

n Fraction: 000…00 Þ significand = 1.0
n ±1.0 × 2–126 ≈ ±1.2 × 10–38

n Largest value
n exponent: 11111110
Þ actual exponent = 254 – 127 = +127

n Fraction: 111…11 Þ significand ≈ 2.0
n ±2.0 × 2+127 ≈ ±3.4 × 10+38

Double-Precision Range

n Exponents 0000…00 and 1111…11 reserved.
n Smallest value

n Exponent: 00000000001
Þ actual exponent = 1 – 1023 = –1022

n Fraction: 000…00 Þ significand = 1.0
n ±1.0 × 2–1022 ≈ ±2.2 × 10–308

n Largest value
n Exponent: 11111111110
Þ actual exponent = 2046 – 1023 = +1023

n Fraction: 111…11 Þ significand ≈ 2.0
n ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Floating Point Representation 6

Floating-Point Example

n What number is represented by the single-precision float

11000000101000…00?

n S = 1

n Exponent = 100000012 = 129

n Fraction = 01000…002

n x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Floating-Point Example

n Represent –0.75
n –0.75 = (–1)1 × 1.12 × 2–1

n S = 1
n Fraction = 1000…002

n Exponent = –1 + Bias
n Single: –1 + 127 = 126 = 011111102

n Double: –1 + 1023 = 1022 = 011111111102

n Single: 1011111101000…00
n Double: 1011111111101000…00

n What is the FP bit representation for –0.7510?

Chapter 3 — Floating Point Representation 7

Code Example – Degree Conversion

float f2c (float fahr)
{

return ((5.0/9.0) * (fahr – 32.0));
}

(argument fahr is stored in $f12)
lwc1 $f16, const5($gp)
lwc1 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

n MIPS has a second set of 32 32-bit registers reserved for
floating point operations.

Floating-Point Addition

n Addition (and subtraction)

(±F1 ´ 2E1) + (±F2 ´ 2E2) = ±F3 ´ 2E3

§ Step 0: Restore the hidden bit in F1 and in F2.
§ Step 1: Align fractions by right shifting F2 by E1 - E2 positions

(assuming E1 ³ E2) keeping track of the lower (or higher) order
bits shifted out.

§ Step 2: Add the resulting F2 to F1 to form F3.

§ Step 3: Normalize F3 (so it is in the form 1.XXXXX …)

- If F1 and F2 have the same sign, shift F3 and increment E3
(check for overflow).

- If F1 and F2 have different signs, F3 may require many left
shifts each time decrementing E3 (check for underflow).

§ Step 4: Round F3 and possibly normalize again.

§ Step 5: Rehide the most significant bit of F3 before storing the
result.

Chapter 3 — Floating Point Representation 8

Floating-Point Addition

n Consider a 4-digit decimal example
n 9.999 × 101 + 1.610 × 10–1

n 1. Align decimal points
n Shift number with smaller exponent.
n 9.999 × 101 + 0.016 × 101

n 2. Add significands
n 9.999 × 101 + 0.016 × 101 = 10.015 × 101

n 3. Normalize result & check for over/underflow
n 1.0015 × 102

n 4. Round and renormalize if necessary
n 1.002 × 102

FP Adder Hardware
n Much more complex than integer adder.
n Doing it in one clock cycle would take too long

n Much longer than integer operations.
n Slower clock would penalize all instructions.

n FP adder usually takes several cycles
n Can be pipelined.

Chapter 3 — Floating Point Representation 9

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Floating-Point Multiplication
n Consider a 4-digit decimal example

n 1.110 × 1010 × 9.200 × 10–5

n 1. Add exponents
n For biased exponents, subtract bias from sum.
n New exponent = 10 + –5 = 5

n 2. Multiply significands
n 1.110 × 9.200 = 10.212 Þ 10.212 × 105

n 3. Normalize result & check for over/underflow
n 1.0212 × 106

n 4. Round and renormalize if necessary
n 1.021 × 106

n 5. Determine sign of result from signs of operands
n +1.021 × 106

Chapter 3 — Floating Point Representation 10

Denormal Numbers
n Exponent = 000...0 Þ hidden bit is 0

n Denormal numbers are smaller than normal numbers.

n Denormal with fraction = 000...0

Two representations
of 0.0!

BiasS 2Fraction)(01)(x -´+´-=

0.0±=´+´-= -BiasS 20)(01)(x

Infinities and NaNs
n Exponent = 111...1, Fraction = 000...0

n ±Infinity
n Can be used in subsequent calculations, avoiding need for

overflow check.

n Exponent = 111...1, Fraction ≠ 000...0
n Not-a-Number (NaN).
n Indicates illegal or undefined result

n e.g., 0.0 / 0.0
n Can be used in subsequent calculations.

Chapter 3 — Floating Point Representation 11

Accurate Arithmetic

n The IEEE 754 Standard specifies additional rounding control
n Extra bits of precision (guard, round, sticky).

n Choice of rounding modes.
n Allows programmer to fine-tune numerical behavior of a computation.

n Not all FP units implement all options
n Most programming languages and FP libraries just use defaults.

n Trade-off between hardware complexity, performance, and market
requirements.

n Rounding (except for truncation) requires the hardware to include
extra bits during calculations

n Guard bit – used to provide one bit when shifting left to normalize a
result (e.g., when normalizing after division or subtraction).

n Round bit – used to improve rounding accuracy.

n Sticky bit – used to support Round to nearest even; it is set to a 1
whenever a 1 bit shifts (right) through it (e.g., when aligning during
addition/subtraction).

x86 FP Instructions

n Optional variations
n I: integer operand.
n P: pop operand from stack.
n R: reverse operand order.
n But not all combinations allowed.

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)

FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Floating Point Representation 12

Subword Parallelism

n ALUs are typically designed to perform 64-bit or 128-bit
arithmetic.

n Some data types are much smaller, e.g., bytes for pixel
RGB values, half-words for audio samples.

n Partitioning the carry-chains within the ALU can convert
the 64-bit adder into 4 16-bit adders or 8 8-bit adders.

n A single load can fetch multiple values, and a single add
instruction can perform multiple parallel additions,
referred to as subword parallelism.

Concluding Remarks

n Bits have no inherent meaning
n Interpretation depends on the instructions applied.

n Computer representations of numbers
n Finite range and precision.
n Need to account for this in programs.

n ISA’s support arithmetic
n Signed and unsigned integers.
n Floating-point approximation to real numbers.

n Bounded range and precision
n Operations can overflow and underflow.

n MIPS ISA strongly supports IEEE-754.

